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We report molecular dynamics simulations results for model ferrofluid films subject to an external, homo-
geneous magnetic field directed parallel or perpendicular to the film surfaces. The interactions between the
magnetic nanoparticles are modeled via the Stockmayer potential. In a previous study �J. Jordanovic and S. H.
L. Klapp, Phys. Rev. Lett. 101, 038302 �2008�� we have shown that an external field can control the number
and internal structure of the layers characterizing the fluid films, in qualitative agreement with experiments.
Here we explore the dependence of the layering effects on thermodynamic conditions, and we analyze the
results from an energetic �microscopic and macroscopic� perspective. As a special case we investigate a
monolayer to bilayer transition induced via a perpendicular field.
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I. INTRODUCTION

It is now well established that quasi-two-dimensional sys-
tems involving dipolar interactions such as thin films of fer-
rofluids �1,2�, magnetic nanoparticles at interfaces �3,4�, thin
magnetic films �5�, but also systems of superparamagnetic
�6� or polarizable particles �7� can display a variety of self-
organized structures. Examples are the self-assembly into
�in-plane� chains �2� and the formation of one- and two-
dimensional crystalline structures �7,8� and other patterns in
systems with additional external fields �4,5,8–10�. Many of
these experimentally observed phenomena can be repro-
duced by particle-based computer simulations of simple di-
polar model fluids. This concerns the chaining �11–15� but
also the formation of larger �mesoscale� patterns such as
labyrinths and columnar structures �16,17�.

Additional phenomena emerge when quasi-two-
dimensional systems are somewhat expanded into the third
dimension. An immediate effect occurring already for non-
polar particles is the formation of layers of particles. A spe-
cific feature for dipolar systems, on the other hand, is that the
layer formation can be influenced by magnetic fields directed
parallel or perpendicular to the surface. This has been first
revealed by neutron reflectometry measurements �18�. In a
recent paper �19� we have reported molecular dynamics
�MD� simulation results supporting the field effects on dipo-
lar layering. As a model system we used a Stockmayer fluid
�involving dipolar and Lennard-Jones interactions� confined
between two plane parallel walls. In particular, we have
shown that an external perpendicular field can induce new
layers in the system, whereas an in-plane field has the oppo-
site effect. Thus, external fields can serve as control param-
eters for the �surface-initiated� layering.

The purpose of the present paper is to give a more de-
tailed description of our results. In �19� we have concentrated
on the role of the surface separation. Here we rather focus on
the dependence of the field effects on thermodynamic condi-
tions. To this end we have performed extensive MD simula-
tions of confined Stockmayer fluids at various densities in

the liquid phase regime and several values of the external
field. Furthermore, we interpret the results in the light of a
macroscopic �mean-field� theory and in terms of microscopic
energies characterizing the dipolar layers. Moreover, we
present results for systems close to two dimensions.

The paper is organized as follows. In Secs. II and III we
describe the model system and some technical details of our
simulations. A mean-field description of the confined sys-
tems is given in Sec. IV. Numerical results are presented in
Sec. V, and in Sec. VI we summarize the main findings.

II. MODEL SYSTEM

We consider a Stockmayer �SM� fluid consisting of N
spherical particles with embedded, permanent point dipole
moments �i �i=1, . . . ,N� located in the center of the spheres.
The total interaction between two particles i and j consists of
a Lennard-Jones �LJ� and a dipole-dipole �DD� potential.
The LJ potential is defined as

uLJ�ij� = 4��� �

rij
�12

− � �

rij
�6� , �2.1�

where rij = 	rij	= 	ri−r j	 is the distance between the particles
and � is their diameter. To save simulation time we truncate
and shift the LJ potential at rc=2.5� �20�. The dipole-dipole
interaction is given by

uDD�ij� =
�i · � j

rij
3 − 3

��i · rij��� j · rij�
rij

5 . �2.2�

Following earlier simulation work on Stockmayer fluids �see,
e.g., �21,22��, which are also used as models for systems
with electric dipoles, we do not use physical units here.

To model a fluid film we introduce two plane-parallel
walls located at z= �Lz /2, which are infinitely extended in
the x-y plane. The fluid-wall potentials affecting particle i are
given by an integrated LJ potential �13,23�, yielding*klapp@physik.fu-berlin.de
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where the minus �plus� corresponds to the interaction with
the upper �lower� wall. In addition, the particles are subject
to an external, homogeneous field H, yielding a potential
contribution

uDF�i� = − �i · H . �2.4�

The field direction is chosen to be either perpendicular to the
surfaces, i.e., H=Hz=Hzêz, or parallel to them, i.e., H=H�

=H�êx �with ê� being the unity vector in direction ��.

III. COMPUTER SIMULATIONS

We perform MD simulations of N=500 particles at con-
stant �kinetic� temperature T �20�. The translational and ro-
tational equations of motion are solved via the standard leap-
frog algorithm �20�, using a time step of �t*=0.0025 with
t*=�� /m�2t, m being the mass of the particles. The long-
range character of the dipole-dipole interaction is handled
via a “slab-adapted” version of the three-dimensional Ewald
summation �23–25� with conducting boundary conditions
parallel to the surfaces and insulating ones in the z direction
�the latter are not expected to influence the results qualita-
tively �26��. The simulations were started from zero-field
configurations of confined SM fluids generated as described
in a previous study �13�. For small field strengths the systems
equilibrate in about 3�104 steps, while at higher field
strengths even fewer steps are needed since the field sup-
presses orientational fluctuations. There were no marked dif-
ferences in the equilibration times between the cases H=Hz
and H=H�.

The simulations were carried out at the reduced tempera-
ture T*=kBT /�=1.35 and the reduced dipole moment �*

=� /���3=2.0. These values correspond to a dipolar cou-
pling parameter of 	=�2 /kBT�3= ��*�2 /T*�3.0. Further-
more, we consider wall separations L

z
*=Lz /�
5.0. The

overall reduced density �*=��3=N�3 /ALz was set to values
between 0.4 and 0.8. The strength of the external field is
measured through the parameter H*=H� /kBT, and we con-
sider field strengths up to H*�75. We note that this value is
rather high for many real ferrocolloids, which typically con-
sist of nanoparticles with diameters of about 10 nm. The
magnetic moment � is proportional to the particle’s volume
�see, e.g., �27��. For the typical 10 nm particles one can then
infer that the real magnetic field corresponding to H*=75
would be about 3 T, which is indeed very large. On the other
hand, the value H*�75 can be easily reached for larger par-
ticles. Indeed, the particles used in Ref. �2� had a diameter of
about 24 nm such that much smaller field strengths of about
0.2 T are required at the same dipole-field coupling strength.

It is also worth to briefly discuss our parameters in the
light of what is known theoretically about the phase behavior
of confined SM fluids �in zero field�. First, the coupling pa-
rameter 	�3 is far too small to induce spontaneous magne-
tization. Such behavior has indeed been found in strongly

confined �L
z
*�3–7�, dense systems of dipolar soft spheres,

but only at 	�7 �25,28�. Another issue is the condensation
transition between vapor and �isotropic� liquid. Indeed, the
bulk Stockmayer fluid characterized by �*=2.0 has a vapor-
liquid critical point at T

c
*=2.06 and �

c
*=0.29 �29�. Vapor-

liquid coexistence of confined SM fluids at �*=2.0 �and a
purely repulsive fluid-wall potential� has been investigated
very recently by Richardi et al. �16�, who employed Gibbs
ensemble Monte Carlo simulations. As expected �23�, the
condensation transition is strongly affected by the spatial
confinement. In particular, one observes a narrowing of the
coexistence curve on the liquid side �16�. The transition still
exists at a wall separation of L

z
*=6.0 �smaller values were

not considered� and temperatures comparable to the value
T*=1.35 chosen here. Taking these results as a reference we
expect that our model fluid at L

z
*=5.0 �to which most of

present results pertain� is in a condensed liquid phase for
densities �*�0.5. Lower densities presumably correspond to
states either close to or even within the coexistence line.
Note, however, that these densities can still correspond to
stable states when the system is subject to a strong perpen-
dicular field, Hz.

Structural quantities

The overall field-induced magnetization is measured by
the standard first-rank order parameter

P1 =
1

N
�
i=1

N

	�̂i · d̂	 , �3.1�

where �̂i is the unit vector associated with the dipole mo-

ment of particle i, and d̂ is the global director of the field-

induced �or spontaneous� order. In general, d̂ is defined as
the eigenvector corresponding to the largest eigenvalue of
the ordering matrix Q with Cartesian elements Q�

=N−1�i=1
N �3�̂i,��̂i,−��� /2 �20�. This definition takes into

account the possibility of spontaneous ordering. Indeed,
spontaneous magnetization has been observed in dipolar
nanofilms characterized by a very large coupling strength
�15,25�. In the present work we focus on moderate coupling

conditions where the zero-field system is isotropic, and d̂
coincides with the field direction. Perfect alignment along
the field corresponds to P1=1.

The surface-induced inhomogeneity of the number den-
sity is measured, as usual, by density profiles ��z�
= �N�z�� / �A�z� where N�z� is the number of particles in a
slice of thickness �z=0.05� around z, and A is the box area
in the x-y plane. In addition, we consider the local polariza-
tion,

P1�z� = ��
i=1

N�z�

�̂i · d̂

N�z�
� . �3.2�

A typical surface effect revealed by ��z� is the formation
of layers parallel to the confining walls. The lateral order
within these layers is investigated via in-plane �“intra”� cor-
relation functions defined as
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g�
intra�R� = � �

i,j�i�j�

N�

��R − Rij�

N���2�R�R�z
� , �3.3�

where the pairs ij are from the same layer � with N� par-
ticles and a typical thickness �z of about one particle diam-
eter. Also, Rij =�xij

2 +yij
2 is the lateral distance between these

particles, and �R=0.05� is a tolerance. The layers are iden-
tified from the density profiles �13� by locating the z values
of two adjacent minima.

To measure the degree of translational lateral ordering
quantitatively we compute the bond-angle order parameters

�n =� 1

N�
�
i=1

N� 1

Ni
b��

j=1

Ni
b

exp�in� j��� , �3.4�

where Ni
b is the number of neighbors of a particle i, and � j is

the angle of the bond vector Rij = �xij ,yij� between neighbor-
ing particles i and j and an arbitrary in-plane axis, e.g., the x
axis. Particles i and j are considered as neighbors if their
separation Rij is smaller than the distance related to the first
minimum of the in-plane pair correlation function g�

intra�R�.
We are particularly interested in the order parameters �4 and
�6 measuring how close the system is to a perfect square
lattice ��4=1, �6=0� or hexagonal lattice ��4=0, �6=1�. In-
deed, hexagonal and squarelike ordering has been observed
in two-dimensional �or nearly two-dimensional� systems of
paramagnetic particles �6,8�.

Finally, the mutual arrangement of particles in neighbor-
ing layers � and �� is investigated via interlayer correla-
tion functions defined by

g�
inter�R� = ��

i�

N

�
j��

N�

��R − Rij�

N���2�R�R�z�

� . �3.5�

IV. MEAN-FIELD THEORY

As a reference for the computer simulations it is instruc-
tive to consider the predictions of a simple, mean-field �MF�
type of theory. Within this framework the interactions be-
tween the particle are taken into account only via an effective
field HMF acting on each of the otherwise uncorrelated par-
ticles. Following earlier work �25�, we further assume that
the inhomogeneous confined systems can be characterized by
a homogeneous singlet density and thus, a homogeneous
mean field. The resulting expression for HMF consists of �i� a
bulklike �“Lorentz”� field �4� /3V�M �with M= ��i=1

N �i� be-
ing the total magnetization�, �ii� surface corrections to the
Lorentz field, and �iii� a “demagnetizing field” HDM which
depends on the direction of the external field, H. In particu-
lar, if H=Hz, the field-induced magnetization gives rise to
surface “charges” which generate, in turn, a demagnetizing
field of strength HDM=−�4� /V�Mzêz �where Mz is the z
component of the magnetization�. We note that, for the ge-
ometry and field direction considered, the demagnetizing
field exists irrespective of the boundary conditions in the z

direction �26�. On the other hand, HDM=0 in the case of a
parallel external field, because no surface charges are in-
duced. Taken altogether, the mean-field contributions are
�25�

Hz
MF = − ���8�

3
− �

�

Lz
�P1êz,

H�
MF = ���4�

3
−

�

2

�

Lz
�P1êx. �4.1�

In Eq. �4.1� we have used the ansatz M=N�P1d̂. The ap-
pearance of the terms �� /Lz reflect the reduction of the
mean fields due to the presence of surfaces. Indeed, for a
bulk system without any boundaries the mean field reduces
to the Lorentz field, that is, 	HMF 	 =���4� /3�P1. In all
cases, the total field acting on a particle is Hz���

tot =Hz���
MF+Hz���.

Given the above mean-field expressions we can calculate
the magnetization order parameter P1 as a function of the
field strength �and the thermodynamic parameters�. Recalling
that the mean-field system is uncorrelated, the probability for
a dipole to orient along a given direction � is determined by
the Boltzmann factor �exp�−U���� with U���=−� ·Htot.
Thus, we arrive at the MF equation

P1 =
� d��̂��� · d̂ exp����� · Htot�

� d� exp����� · Htot�
, �4.2�

where �d�=�0
2�d��0

�d� sin �. For the perpendicular field

�d̂= êz� one has �̂��� · êz=cos � and ���� ·Htot=�Htot cos �,
such that the integrand does not depend on �. The integral
then leads to the standard Langevin function

	P1	Hz
= L�f�Hz,P1�� , �4.3�

where L�y�=coth�y�−1 /y and f�Hz , P1�=�Hz
−��2P1�8� /3−�� /Lz�.

For the case of a parallel field we use Eq. �4.2� with d̂
= êx. Using �̂��� · êx=sin � cos �, the MF expression for or-
der parameter becomes

	P1	H�

=

�
0

2�

d��
0

�

d� sin2 � cos � exp�sin � cos �g�H�,P1��

�
0

2�

d��
0

�

d� sin � exp�sin � cos �g�H�,P1��
,

�4.4�

where g�H� , P1�=�H� +��2P1�4� /3− 1
2�� /Lz�. Perform-

ing first the integration over � we obtain
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	P1	H�
=

�
0

�

d� sin2 �I1�sin �g�H�,P1��

�
0

�

d� sin �I0�sin �g�H�,P1��
, �4.5�

where In�x� is the modified Bessel function of order n.
A further simplification of the case of a parallel field oc-

curs when we assume that the particles orient along in-plane
directions already without the external field. This assumption
is indeed not unreasonable in strongly coupled systems
where the preference of in-plane orientations is well estab-
lished �25�. Neglecting any perpendicular orientations, that
is, assuming sin �=1, Eq. �4.5� transforms into

	P1	H�,�=�/2 =
I1�g�H�,P1��
I0�g�H�,P1��

. �4.6�

For completeness we also give the corresponding bulk rela-
tion, where

	P1	bulk = L�e�H,P1�� , �4.7�

with e�H , P1�=�H+��2P14� /3.
The MF equations �4.3� and �4.5�–�4.7� form self-

consistency relations for the order parameter P1, which can
be easily solved numerically. Representative results are given
in Sec. V A.

V. RESULTS

A. Global order induced by external fields

We start by analyzing the overall field-induced magneti-
zation measured by the order parameter P1 in the confined
SM fluid films. As an example we choose the wall separation
L

z
*=5.0. Simulation data for P1 as function of a parallel or

perpendicular magnetic field are plotted in Fig. 1, where we
have included corresponding bulk data as a reference. For all
systems, the small nonzero values of P1 directly at H=0 are
expected due to the finite size of our simulation system.

Considering first the confined SM fluid in a parallel ex-
ternal field, we see from the simulation data in Fig. 1 that
already small values of H

�
* induce a very large magnetiza-

tion. In other words, the zero-field susceptibility with respect
to a parallel field �which could be calculated from the fluc-
tuations of the total dipole moment in parallel directions
�30�� is large. In the present study we did not explicitly cal-
culate the susceptibility due to the large simulation times
required to obtain convergent results �30�.

Interestingly, in the range H
�
*�5 the confined system re-

sponds even more pronouncedly than its bulk counterpart.
This is because the dipolar particles in the film prefer in-
plane directions already in zero field �13�, thereby enhancing
the possibility of energetically favorable head-to-tail arrange-
ments. Moreover, there is no macroscopic demagnetizing
field �see Sec. IV�. These trends are, at least to some extent,
reflected by the results of the MF theory included in Fig. 1.
Considering a fixed, small field strength �such as H

�
*=2� and

focussing on parallel fields, we see that Eq. �4.5� predicts a

slightly smaller order parameter than the corresponding bulk
relation �see Eq. �4.7��. This decrease occurs because the
mean field in the pore is slightly reduced �due to the ex-
cluded volume at the surfaces�, while the orientational fluc-
tuations are treated on the same footing for the two systems
�bulk and pore�. Different behavior is predicted by Eq. �4.6�,
which takes into account the surface-induced restriction of
dipole fluctuations. It follows that the confined �MF� system
responds more strongly to H� than the bulk, in qualitative
agreement with the simulation results. Quantitatively, how-
ever, all the MF equations yield poor results. In particular,
the MF theory predicts spontaneous magnetization as seen
from the nonzero values of P1 in the limit H

�
*→0. This in-

dicates that the MF approach strongly overestimates the ten-
dency of the dipolar interactions to form ferromagnetic
phases, as expected from previous studies �see, e.g., Ref.
�25��.

Coming back to the simulation results for H�, the pro-
nounced response to small fields is also indicated by the
behavior of the mean dipolar energy. The latter is plotted in
Fig. 2 �without the contribution from the external field�.
Upon switching on the parallel field, the energy quickly de-
creases, very similar to what is found in the corresponding
bulk system. The decrease indicates that the particles can
arrange better and better in energetically “comfortable” con-
figurations. This aspect will be discussed in more detail in
Sec. V C.

Considering now the simulation data for a perpendicular
field we observe from Fig. 1 entirely different behavior. In-
creasing H

z
* from zero the magnetization is essentially neg-

lible up to H*�7 �in other words, the zero-field susceptibil-
ity is very low for perpendicular fields �30��. Only for larger
fields the order parameter achieves significant values, and
saturation only occurs for H

z
*�30. The behavior of the func-

tion P1�H
z
*� thus reflects that there is a strong “competition”
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FIG. 1. Global order parameter as a function of the external field
at �*=0.6. Simulation and MF results for the confined �L

z
*=5.0�

and bulk system are denoted by symbols and lines, respectively.
The inset shows the behavior of P1 for small fields on an expanded
scale.
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between the external field, which tends to align the particles
normal to the surfaces, and the surface-induced preference of
in-plane orientations. Our MF approach �see Eq. �4.3�� is
unable to reproduce this latter effect, it only takes into ac-
count the macroscopic demagnetizing field �see Sec. IV�.
Still, we observe from Fig. 1 that the MF order parameter for
a finite H

z
* is much smaller than its bulk counterpart, in

qualitative agreement with the MD data.
The behavior of the corresponding mean dipolar energy

�see Fig. 2� furthermore shows how the external field renders
the system more and more repulsive as a whole. Interest-
ingly, UDD changes sign just in the range of field strengths
where P1 increases markedly. In Figs. 1 and 2 the results are
presented only for one thermodynamic state. It seems plau-
sible that the “threshold” range where an external perpen-
dicular field can overcome the barrier depends on the density
and dipole coupling. This issue will be discussed in Sec.
V B.

B. Structural changes induced by a perpendicular field

1. Layering

We now discuss microscopic properties of the confined
films, focussing first on layering effects. In an earlier study
�19� we have demonstrated that the corresponding oscilla-
tions of the density profiles �*�z� and, in particular, the re-
sulting number of layers can be enhanced by an external field
Hz. The main focus of Ref. �19� has been the dependence of
the field-induced layer formation on the surface separation.
Here we rather explore the role of the �average� density �*

and the dipolar coupling parameter, 	.
An interesting question is which field strengths H

z
* are

required to form an additional layer. Not surprisingly, the
layer generation is closely related to the degree of field-
induced magnetization which, in turn, depends on the density
�and coupling strength�. Results for the global order param-
eter P1 as a function of H

z
* are plotted in Fig. 3�a�. All curves

display a thresholdlike behavior in the sense that P1 starts to
increase from zero only when H

z
* has significant nonzero

values. Moreover, at given finite field, the magnetization at a
given value of H

z
* is the larger, the smaller �* is. This be-

havior is consistent with the macroscopic theory �see Sec.
IV� predicting that the demagnetizing field and, thus, the
mean field HMF acting against the external field are propor-
tional to the density �see Eqs. �4.1��. Therefore, the total field
at given H

z
* decreases with �*. Furthermore, lower density

implies that the surface-induced in-plane ordering �not cap-
tured by the MF approach� is less pronounced.

Analyzing now the curves P1�H
z
*� in terms of layer for-

mation we find that the new layer typically appears when
P1�0.4–0.5. This corresponds to field strengths of H

z
*�8

�at �*=0.4� up to H
z
*�12 �at �*=0.6�. Typical results for

density profiles at the average density �*=0.4 are shown in
Fig. 3�b�. In the small external field H

z
*�7 we observe �as at

H*=0� four maxima in �*�z� indicating four layers in the
system. The number of four is expected at the present wall
separation L

z
*=5 and the fact that the fluid-wall interaction

defined in Eq. �2.3� disfavors the particles to access the sur-
faces closer than �� /2. Different behavior is found already
at H

z
*=12 where the density profile now reveals a fifth layer

in the system. At the same time, the separation between the
layers is reduced compared to the low-field case. The layer
formation becomes even more pronounced at H

z
*=74, as re-

flected by the strong increase of peak heights. A similar layer
creation �at L

z
*=5.0� occurs at the average density �*=0.6

�19�.
In Fig. 3�c� we plot additionally the order parameter P1�z�

�see Eq. �3.2�� for several field strengths at �*=0.4. Interest-
ingly, there is some local parallel order even at small fields
�e.g., H

z
*=7.4� where the global order parameter P1 is very

small. We also see that a denser system ��*=0.6� displays
essentially no local order at this field, illustrating the density
effect mentioned already before. Upon increasing H

z
*, P1�z�

develops oscillations mimicking essentially those in �*�z�.
We note that, by definition, P1�z� does not depend on the
local number of particles. Therefore, the large peak heights
of P1�z� appearing in the contact zones signal that the field-

0 5 10 15 20 25 30

H
*

-5

0

5

U
* D

D

H
*

z

H
*

||
bulk

FIG. 2. Simulation data for the total dipolar energy UDD /N at
�*=0.6, L

z
*=5.0, and two directions of the external field. Included

are results for the bulk system.
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FIG. 3. �a� Global order parameter as function of the field
strength at different densities �L
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density and magnetization profiles at �*=0.4. For comparison, �c�
includes data at H

z
*=7.4 and �*=0.6 �see bottom�.
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induced alignment is most pronounced close to the walls,
rather than in the middle of the slit. Finally, at the largest
field considered �H

z
*=74� the system is nearly fully aligned

throughout the slit.
So far we have considered systems with a dipolar cou-

pling parameter of 	�3. We close this paragraph with a
brief discussion of layer formation at smaller coupling
strengths �higher values of 	 are not considered due to the
possible appearance of spontaneous polarization �28��. We
specialize to the case �*=0.6 and H

z
*=10. Density profiles

for various values of 	 are plotted in Fig. 4, where we have
included corresponding magnetization profiles. At 	�3 we
observe just the onset of a new layer forming in addition to
the four layers present at H=0, and the �local� polarization is
still rather small. This is different at 	=1 where the fifth
layer is clearly visible and the particles are strongly aligned
in spite of the rather small field strength considered. Thus,
decreasing 	 has a similar effect as decreasing the average
density, for the same reasons as discussed before: Decrease
of the demagnetization field and the surface-induced prefer-
ence of in-plane orientations. We found, however, that there
is lower limit of 	 below which field-induced layer formation
becomes impossible. An example is the system at 	=0.5 for
which the density profile reveals only four layers. At the
same time, the magnetization in this system is very high.
Indeed, the limit 	→0 at fixed H corresponds to a system in
which each particle still interacts with the external field, but
the interaction between the particles is rather LJ-like. There-
fore, the repulsion between the aligned dipoles in a layer
vanishes, and the external field does not trigger formation of
a new layer. The role of repulsion will be discussed in more
detailed below.

2. Lateral ordering

To illustrate the lateral ordering of the confined particles
in strong perpendicular fields we present in Fig. 5 results for
the intralayer and interlayer correlation functions defined in
Eqs. �3.3� and �3.5�. At the lower density �*=0.4 �see Fig.

5�a�� the most prominent field-induced effect on g1
intra�R� is a

shift of the first peak from R*�1 �zero field� to R*�1.2,
indicating a significant increase of the nearest-neighbor dis-
tance within the layer. This is reasonable since the field-
induced alignment of the dipole moments in side-by-side
configurations induces repulsive interactions and is thus en-
ergetically unfavorable. At the same time, the maximum of
the correlation function g12

inter�R� moves from R*�0.9 �H
=0� to R*�0.1 �H

z
*=74�. Thus, looking from a particle in

layer 1 �contact layer�, its nearest neighbor in the adjacent
layer 2 is “pulled” beneath. Similar behavior is reflected by
the correlation function between layers 1 and 3 �see bottom
of Fig. 5�a��. We conclude that, at the moderate density con-
sidered ��*=0.4�, the external field yields head-to-tail-like
configurations in vertical directions as illustrated by the
sketch in the bottom of Fig. 5�a�. Indeed, the observation of
vertical chains is what one may have expected just from the
properties of the dipolar interaction. Nonetheless, a different
vertical structure is found in denser systems, as we have
shown already in �19� for the case �*=0.6. Here we focus on
the even larger density �*=0.8, where the external field is
actually unable to generate a new layer at the chosen wall
separation L

z
*=5.0 �see the density profiles plotted in the

inset of Fig. 5�b��. Results for the lateral correlations are
plotted in the main part of Fig. 5�b�. We observe again a shift
of the first peak of the intralayer correlation function �top�
which is, not surprisingly, much less pronounced than at
lower densities. More interestingly, the interlayer correlation
functions now reveal formation of a “zig-zag” pattern in ver-
tical directions. Thus, particles in layer 2 are laterally dis-
placed against those in layer 1, whereas those in layer 3 sit
on top of those in layer 1 �see sketch in the bottom of Fig.
5�b��. Very similar behavior has been found at �*=0.6 �19�.
The appearance of “zig-zag” rather than a chain patterns at
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FIG. 4. Density profiles at �*=0.6, H
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coupling parameters 	. The inset shows corresponding magnetiza-
tion profiles.

0

1

2

3

4

gin
tr

a 1(R
)

H
*

= 0
H

*

z
= 74

0
0.5

1
1.5

2
2.5

g 12

in
tr

a (R
)

0 1 2 3

R
*

0.5
1

1.5
2

2.5

g 13

in
tr

a (R
)

(a) (b)

0 1 2 3

R
*

-0.3 0 0.3
z/L

z

0

2

4

ρ* (z
)

FIG. 5. Interlayer- and intralayer correlation functions at �a�
�*=0.4 and �b� �*=0.8 in zero field and in a perpendicular field.
Top, in-plane �contact layer 1�; middle, interlayer 1 vs 2; bottom,
interlayer 1 vs 3. Included are sketches of the particle arrangements
as suggested by the correlations. The inset in the top part of �b�
additionally shows the density profile for �*=0.8 at zero and per-
pendicular field.

JELENA JORDANOVIC AND SABINE H. L. KLAPP PHYSICAL REVIEW E 79, 021405 �2009�

021405-6



higher densities can be understood from the fact that the
layer spacing is smaller than a particle diameter �e.g., �z
�0.9� at �*=0.8�. Taken altogether, the resulting local
structure resembles somewhat the body-centered tetragonal
structure found in electrorheological fluids �31� and also in
spontaneously ordered dipolar fluids at high densities �32�.
We note, however, that the positional effects indicated by the
correlation functions in Fig. 5�b� are clearly restricted to a
short-range scale.

We next consider the mean dipolar energies within and in
between the layers �see Eqs. �A1� and �A3�, respectively�.
Results are given in Table I. For all three densities consid-
ered the intralayer and interlayer energies in zero field are
negative, consistent with the negative value of the overall
dipolar energy in the liquid phase �see Fig. 2 for data at �*

=0.6�. From Table I we observe, in particular, that the energy
is lowest in the contact layer �labeled 1�. This is because
close to the surfaces the local arrangements of the dipoles
into in-plane clusters is most pronounced �13�. In a perpen-
dicular external field, all the intralayer energies become posi-
tive due to field-induced alignment of the particles �note that
the systems are essentially fully magnetized at the high field
strength considered, see Fig. 3�. It is interesting, however,
that the repulsion within the inner layers �2 and 3� is mark-
edly lower than at the boundaries, and this holds for all den-
sities considered. The smaller repulsion can be understood
from the fact that the inner layers are somewhat thicker than
the contact layer �e.g., at �*=0.8, we have �z�0.95� in the
first inner layer as compared to �z�0.55� at contact �see
inset of Fig. 5�b���. In other words, particles in the contact
layer are more strongly “localized” at a given value of z,
whereas the distribution in the inner layers is somewhat
smeared. The latter feature yields a softening of the repul-
sion.

Finally, it is an interesting question whether the field Hz
can induce crystalline order within the layers. Indeed, experi-
ments involving two-dimensional systems of superparamag-
netic colloids �6� have shown that an external field normal to
the surface generates hexagonal ordering. Motivated by these
findings we have calculated bond-order parameters as de-
fined in Eq. �3.4�, focussing on the systems with average
densities �*=0.6 and �*=0.8. It turns out, however, that even
for these rather dense systems the degree of translational
order is small. This is seen from Table II, where we summa-
rize results obtained for the contact layers. Both at �*=0.6
and �*=0.8 the local surrounding of a particle in zero field

resembles that in a hexagonal lattice, as reflected by the
somewhat higher values of �6 as compared to �4. Switching
on a strong perpendicular field does not alter the order pa-
rameters significantly. Thus we conclude that there is no
field-induced crystallization at the conditions considered.

3. Field-induced monolayer to bilayer transition

Recent experiments �8� of thin films of paramagnetic par-
ticles in perpendicular fields have shown that such systems
can form interesting patterns such as labyrinths as well as
cubic and hexagonal structures. These patterns occur when
the film thickness �determined by the separation of two par-
allel, confining glass plates� is of the order of 1.5 particle
diameter. Due to the slightly enhanced space �as compared to
a true monolayer� the resulting dipolar interactions are still
repulsive, but strongly softened as compared to the r−3 repul-
sion of two aligned dipolar which stand precisely side by
side. The resulting “core softening” is indeed believed to be
one of the main features yielding pattern formation �33�.

Inspired by the above-mentioned experiments �8� we have
performed some calculations of our model system �which
involves permanent dipoles� at L

z
*=2.0 and �*=0.4. Corre-

sponding density profiles are shown in Fig. 6�a�. In zero
field, the density profile reflects the presence of a single
layer. Its soft shape indicates some freedom of the particles
to move in vertical direction; the resulting situation thus
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TABLE I. Intralayer and interlayer dipolar energies per particle
in zero field and a strong perpendicular field at three densities.

�* H
z
* ŨDD

1 ŨDD
2 ŨDD

3 ŨDD
12 ŨDD

23 ŨDD
13

0.4 0 −3.29 −2.71 −2.69 −0.73 −0.81 −0.07

0.4 74 5.49 4.88 4.80 0.06 −0.07 −0.01

0.6 0 −4.04 −3.24 −3.22 −0.77 −0.83 −0.08

0.6 74 8.60 8.02 7.71 0.26 0.34 −0.01

0.8 0 −4.88 −3.14 −2.47 −0.69 −0.82 −0.12

0.8 74 12.29 12.08 11.98 0.30 0.33 −0.0003

TABLE II. Bond-order parameters characterizing the contact
layers in zero field and a strong perpendicular field at �*=0.6 and
�*=0.8 �wall separation L

z
*=5.0�. Included are the average numbers

of neighbors.

�* H
z
* �4 �6 Nb

0.6 0 0.36 0.53 4.37

0.6 74 0.28 0.46 5.33

0.8 0 0.28 0.54 5.09

0.8 74 0.21 0.55 5.7
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becomes comparable to that in the experiments �8�. The cor-
responding MD snapshot in Fig. 7�a� reveals that the par-
ticles organize into �short� chainlike structures, as expected
in systems of permanent dipoles close to two dimensions
�see, e.g., �2,14��. In a strong perpendicular field the structure
becomes entirely different. First, the system now consists of
two layers �see the density profile in Fig. 6�a��, indicating
that the field has induced a transition from a monolayer to a
bilayer. The second main effect of the field is the formation
of an inhomogeneous lateral structure. Indeed, inspecting the
snapshots in Figs. 7�b� and 7�c� we see within each layer a
chainlike structure characterized by locally aligned, short
strings. Notice that the two layers of the present system are
so close to each other �layer spacing �0.55�� that the par-
ticles cannot arrange on top of each other �forming dipolar
pairs in field direction� but are rather displaced. This is also
reflected by the positions of the first peaks of the intralayer
and interlayer correlation functions plotted in Figs. 6�b� and
6�c�.

Similar chainlike structures have been found in the afore-
mentioned experiments �8� on superparamagnetic particles.
Indeed, the area packing fraction in our simulations �layer

= �� /4�Nlayer�2 /A�0.32 is comparable to the corresponding
packing fraction in the experiment. Moreover, inhomoge-
neous patterns and labyrinths have also been observed in
experiments of ferromagnetic nanoparticles evaporated at a
surface �3,4�. These effects have recently been simulated by
MC simulations �16� of a SM model system very similar to
ours. However, the densities considered in �16� were within a
gas-liquid coexistence region, contrary to the liquidlike den-
sities considered here. Moreover, the wall separations chosen
in �16� were significantly larger �typically L

z
*=10�. We sus-

pect that these are the main reasons that we do not see laby-
rinth �and other mesoscale� structures in our system.

C. Impact of a parallel field

As demonstrated in our earlier study �19�, external fields
can also be used to destroy layers or, at least, to strongly
soften the density profile. This is achieved by choosing the
field direction within the plane of the film surfaces. Here we
discuss in more detail the microscopic effects induced by a
parallel field.

As a typical example we consider in Fig. 8 results for the
density profile and the local magnetization at �*=0.8 and
L

z
*=5.0. The zero-field system has five layers �see Fig. 8�a��.

Switching on the parallel field one observes that the middle
peak first decreases �H

�
*=1.48� and then vanishes at H

�
*

=15. The result is a plateaulike region between the remaining
inner peaks. Increasing H

�
* even further the plateau disap-

pears, while at the same time, the four remaining peaks be-
come more and more pronounced. Finally, at H

�
*=74 we ob-

serve four well-defined layers which seem completely
separated from each other �in the sense that ��z��0 between
the peaks�. In other words, at very large parallel fields the
system becomes solidlike in out-of-plane direction. The de-
velopment of a solidlike structure is also reflected by the
local magnetization plotted in Fig. 8�b�.

We now examine the lateral correlation functions, results
for which are plotted in Fig. 9. As seen from g1

intra�R�, the
parallel field strongly enhances the height of the peaks and
renders the general shape somewhat irregular as compared to
the situation at H=0. In particular, the broadening and in-
crease of the second peak may be interpreted as the begin-
ning of a split-off, a typical phenomenon close to in-plane
solidification. The strong degree of local translational order
is also visible from the bond-order parameters summarized
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in Table III. We find that the field generates, in particular, a
significant increase of the order parameter �6 measuring the
degree of hexagonal in-plane order. This finding is consistent
with the visual impression from the MD snapshot included in
Fig. 9�a�. One clearly recognizes the formation of long, es-
sentially straight chains in field direction, which are shifted
relatively to one other. Due to the shift, the energy between
neighboring aligned chains becomes attractive �31�. In fact,
the shifted chains are a typical arrangement found in aligned
two-dimensional �2D� dipolar systems �2�. In addition, there
are also pronounced translational correlations between the
layers. Indeed, as seen from the function g12

inter�R� plotted in
Fig. 9�b�, the parallel field yields a shift of the first peak
towards smaller separations, supplemented by a splitting of
the second peak. Thus, the chains in the adjacent layers are
again shifted relative to one another.

We note that the mutual arrangement of chains in adjacent
layers has become possible only because the layer separation
in the strong parallel field has enlarged ��z�1.05�� relative
to that in zero field ��z�0.9��. This increase is, of course, a
direct consequence of the destruction of a layer already ob-
served from the density profile �see Fig. 8�a��. In other
words, the “microscopic” reason for the observed layer de-
struction is the formation of a chained, solidlike structure
both in the plane of the surfaces and perpendicular to them.

Finally, the fact that the observed chain structure is indeed
energetically favorable is also reflected by the intralayer and
interlayer dipolar energies, which are given in Table IV. One
recognizes, on the one hand, an overall decrease of the en-
ergy �as compared to the case H=0�, in qualitative agree-
ment with the data plotted in Fig. 2 for �*=0.6. The energy
loss is particularly pronounced within the layers due to the
formation of the energetically favorable chain structure. Fur-
thermore, the interaction between the layers is also negative,
indicating that the mutual arrangement of the layers indeed
optimizes the systems. The smaller values �as compared to
those at H=0� just follow from the fact that the layer spacing
has increased by application of the parallel field.

VI. CONCLUSIONS

In this paper we have analyzed the influence of homoge-
neous magnetic fields on the internal �lateral� structure of
dipolar nanofilms. We have shown that the field-induced ef-
fects on the layering already reported in �19� are not specific
for a particular thermodynamic state. Rather they are typical
for a broad range of densities in the liquid phase. Neverthe-
less, there are some remarkable, density-dependent effects.
First, in perpendicular fields, the density determines the

“threshold” field strength above which the field can create a
new layer. The underlying relation between density and mag-
netization is qualitatively reproduced by the predictions of a
simple mean-field theory. Second, regarding the internal
structure �in strong perpendicular fields�, the particles ar-
range into head-to-tail-like vertical structures at moderate
densities, but into “zig-zag” patterns at higher densities. It is
remarkable, though, that even at the highest density consid-
ered the translational structure in lateral directions �and
strong perpendicular fields� is fluidlike, contrary to what is
seen in two-dimensional systems of paramagnetic particles
�6�. Third, by applying a parallel field at large densities one
can induce, at least on a local scale, a crystallization of the
system. In particular, we observed the formation of chained,
hexagonal structures characterized by large bond-order pa-
rameters �6.

A further aspect explored in this work concerns the struc-
ture found in very thin films close to two dimensions, which
are subject to a strong perpendicular field. Here we observed
highly inhomogeneous lateral patterns resembling the “chain
state” reported in a recent experimental study of core-
softened colloids �8�.

Starting from the present study, an immediate question
concerns the role of the �isotropic� attractive interactions in
our Stockmayer model for the field-induced layer formation
and destruction. Moreover, given the complexity of the struc-
tural effects induced by homogeneous magnetic fields, it will
be interesting to consider inhomogeneities and also dynami-
cal properties such as diffusion in external fields. Work along
these directions is under way.
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APPENDIX: DIPOLAR ENERGIES IN AND IN BETWEEN
THE LAYERS

In order to define expressions for the average dipolar en-
ergies within a layer �UDD

� � and in between two layers �UDD
� ,

with ��� we start from the full dipolar energy as described
via the slab-adapted three-dimenionsional Ewald sum �see,
e.g., �25��. Separating the total Ewald sum into subsets, we
obtain for the intralayer energy per particle

TABLE IV. Intralayer and interlayer dipolar energies in zero
field and in a strong parallel field at �*=0.8 �L

z
*=5.0�.

�* H
�
* ŨDD

1 ŨDD
2 ŨDD

3 ŨDD
12 ŨDD

23 ŨDD
13

0.8 0 −4.88 −3.14 −2.47 −0.69 −0.82 −0.12

0.8 74 −8.74 −8.91 −8.96 −0.13 −0.15 −0.002

TABLE III. Bond-order parameters characterizing the contact
layers in zero field and in a strong parallel field at �*=0.8 �L

z
*

=5.0�. Included are the average numbers of neighbors.

�* H
z
* �4 �6 Nb

0.8 0 0.28 0.53 5.1

0.8 74 0.16 0.77 5.9
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In Eq. �A1�, Vc is the volume of the total Ewald cell includ-
ing the vacuum contribution �25� used in the simulations,
that is, Vc=V+Vvacuum. Also, �̃ is the convergence parameter,
and the functions B and C appearing in the first term on the
right-hand side are defined elsewhere �see, e.g., �20��. Fur-
thermore,

M̃��k� = �
i=1

N�

�i · k exp�ik · ri� . �A2�

On the other hand, the �normalized� interaction energy be-
tween two different layers � and �� is given by
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